

Holmes Worked Example

Limited Ductile AFS200D Wall November 2022

Η	0	m	es	

riojeci i tailie.			
Project No:			
Calcs By:	wlw		CALCS/ SKETCHES
Date:	May 18	Page No:	
Sketch No:		Revision:	

AFS - Worked Example - Limited Ductile AFS200D Wall

The following work example demonstrates the use of AFS200D LOGICWALL as a substitute for a typical reinforced concrete wall designed to NZS3101:2006. Note that due to the underlying fundamental mechanics and tested performance of AFS200D, this system may be designed in accordance with NZS3101

For low axially-loaded walls, where N*<0.10Ag.fc', and where vertical reinforcing steel is less than 1% Ag, additional transverse reinforcement requirement for lateral restraint, confinement and anti-buckling (Clauses 11.4.5.4.2, 11.4.5.3, 11.4.5.4, 11.4.5.5) is not required. Refer to the test report In & Out-of-plane Shear and Bending Testing of the AFS LOGICWALL System available on the AFS website for more information.

For axial loads in excess of 0.10Ag.fc', AFS200D may still be used, however additional insitu boundary regions may be required at wall ends. Talk to your LOGICWALL supplier for more details on formwork to be used for this purpose.

Talk to your LOGICWALL supplier, or refer to the LOGICWALL Master Specification for the appropriate concrete mix to be used with LOGICWALL products.

	ιοp
Holmes	Proje

Project No:			
Calcs By:	wlw		CALCS/ SKETCHES
Date:	May 18	Page No:	
Sketch No:		Revision:	

Scope:

This document provides an example shear wall design using AFS Logicwall permanent formwork system. The design is for a 5-storey apartment building in a New Zealand region with moderate seismicity on non-liquefiable soils. The design is for the shear wall only. It assumes the wall has a low axial load (N*<0.10Ag.fc'). The wall is designed be limited ductile (μ = 2).

It has been demonstrated by testing that low-axially loaded AFS200D walls (N*<0.10Ag.fc') without stirrups or transverse ties, can achieve ductile performance equivalent to a reinforcing concrete wall detailed in accordance with NZS3101:2006 compliant detailing.

The Building

Scope:

- -5 storey apartment building
- Regular contruction walls spaced at regular centres along inter-tenancy walls
- logicwall shear wall 200 thk (AFS200D)
- Chch (medium seismicity)
- TT floors
- Lightweight roof

Floor part-plan:

Notes:

- Concurrency and eccentricity ignored for the purposes of this design.

	Frojeci Name:	·····		
Holmes	Project No:			
	Calcs By:	wlw		CALCS/ SKETCHES
	Date:	May 18	Page No:	
	Sketch No:		Revision:	

Loads Gravity Loads		
Calculate building we	eight and imposed loc	ads in accordance with the principles of NZS1170.1.
5	5 1	, , , ,
Dead Load		
Roof	-	1 0 kPa
200TT + 75	=	3.8 kPa
200 thk GF slab	=	5.0 kPa
Super Dead Load		
Roof	=	0.5 kPa
Typ. floor	=	1.0 kPa
	=	LU KPa
Live Load		
Roof Typ floor	=	0.25 kPa
200 thk GE slab	=	2.0 kPa
Calculate live load redu	iction factor	
ψQA	=	0.3 + 3/sqrt(18m*7m * 4 floors)
	=	0.5
Gravity Load Combin	lations:	
Roof		
[G, Q]	2.50 kPa	
[1.2G, 1.5Q]	3.30 kPa	
[G, 0.3phiAQ]	1.80 kPa	
<u>Typ. floor</u>		
[G, phiQ]		6.20 kPa
[1.2G, 1.5Q]		8.76 kPa
[G. 0.3phiAQ]		5.10 kPa
1,		

Project No:			
Calcs By:	wlw		CALCS/ SKETCHES
Date:	May 18	Page No:	
Sketch No:		Revision:	

Calculate Seismic Forces

Calculate seismic weight and seismic coefficient in accordance with NZS1170.5

-Chch

- IL2

- Soil Class C
- Estimate T = 0.4s
- Estimated ductility, μ = 2

Seismic Weight

- Trib area (per wall) = 18 m* 7m = 126 m2

Seismic Weights								
Level	UDL (Swt)	Trib	Height	Wall Thickness	Total SWt (incl wall)			
Rf	1.8 kPa	126 m2	3.1 m	200 mm	273 kN			
L04	5.1 kPa	126 m1	3.1 m	200 mm	736 kN			
L03	5.1 kPa	126 m2	3.1 m	200 mm	736 kN			
L02	5.1 kPa	126 m2	3.1 m	200 mm	736 kN			
L01	6.6 kPa	126 m2	4 m	200 mm	938 kN			

Table 1 - Seismic weight per wall

Calculate Seismic Coefficient

Calculate seismic coefficients for elastic and limited ductile (μ = 2) response.

Elastic Loading		Limited Ductile Loading, μ=2.0	
Zone Factor	0.3	Zone Factor	0.3
Spectral shape factor	2.36	Spectral shape factor	2.36
Near fault factor	1	Near fault factor	1
Elastic spectra coefficient, C	0.71	Elastic spectra coefficient, C	0.71
Return period factor, R	1	Return period factor, R	1
Structural perfomance factor, Sp	1	Structural perfomance factor, Sp	0.7
Ductility factor, kmu	1	Ductility factor, kmu	1.57
Design Coefficient, Cd	0.71	Design Coefficient, Cd	0.32

Η	0	m	e	S

Project No:			
Calcs By:	wlw		CALCS/ SKETCHES
Date:	May 18	Page No:	
Sketch No:		Revision:	

Distribute Forces:

Distribute seismic lateral force up the height of the building using the equivalent static method as outlined in NZS1170.5

- Use Equivalent Static Method to NZS 1170

$$F_{i} = F_{t} + 0.92V \frac{W_{i}h_{i}}{\sum_{i=1}^{n} (W_{i}h_{i})} \qquad \dots 6.2(2)$$

$$\frac{\text{Level Name Hi}}{(m) \quad (kN)} \frac{\text{Fi}}{(kN)} \frac{\text{Vi}}{(kN)} \frac{\text{Mi}}{(kNm)}$$

$$\frac{5}{4} \quad \text{Rf} \quad 3.100 \quad 269 \quad 228 \quad 228 \quad 706 \\ 4 \quad \text{L04} \quad 3.100 \quad 728 \quad 312 \quad 540 \quad 2381 \\ \end{bmatrix}$$

780

947

1067

4798

7733

11999

240

167

120

Table 2 - Equivalent Static Loading

L03

L02

L01

3.100

3.100

4.000

728

728

929

Check assumed period:

3

2

1

- Use Rayleigh Method

Level	Wi	Fi	Di
	(kN)	(kN)	(m)
Rf	269	228	0.026
L04	728	312	0.02
L03	728	240	0.013
L02	728	167	0.007
L01	929	120	0.003
		Period, T (s) =	0.39

.

Figure 2 - Storey Drift

Table 3 - Fundamental Period Verification - Rayleigh's Method

<u>T = 0.39s < 0.4s. Therefore for EQS method - OK!</u>

Check if P-delta to be considered:

NB: Largest translational period is < 0.4s, therefore P-delta need not be considered

Holmes	Project Name: Project No: Calcs By: Date: Sketch No:	AFS Worked Exam wlw May 18	n ple Page No: Revision:	CALCS/ SKETCHES
Check moment cap Calculate moment	pacity: demand on the v	vall and determine reinf	forcing requirements	
			Rf	
Assume: - Hinging Level is abo	ove ground			
Critical moment at G	rd:		L04	
M*	=	11,999 kNm		
Say, XD16 at 292 ci fc' = 30 MPa	rs e.f.			
$\rho = 0.07\% < 1\%$	OK)			
Calculate axial load	on wall			

Beams frame into each end of wall, therefore floor load on wall = 6.0m + (18m - 6.0m)/2 = 12 m

Figure 3 - Wall Elevation

L02

__L01

				-		
Seismic	Weights					
Level	UDL (Swt)	Trib width	Trib length	Floor load	Axial per base of floor	Aggregate load
Rf	1.8 kPa	7 m	12 m	151 kN	244	244 kN
L04	5.1 kPa	7 m	12 m	428 kN	521	766 kN
L03	5.1 kPa	7 m	12 m	428 kN	521	1287 kN
L02	5.1 kPa	7 m	12 m	428 kN	521	1808 kN
L01	6.6 kPa	7 m	12 m	554 kN	674	2483 kN
Table 4	- Wall axial load					
N*	=		2483 kN	(0.07Ag fc')		
Therefo	re:					
φMn	=	13,331 kN	m >	M*	=	11,999 kNm

a at Nlava a .	AFS	Worked Example	

Но

	Project Name:	AFS Worked Exampl	le	
mas	Project No:			
inics	Calcs By:	wlw		CALCS/ SKETCHES
	Date:	May 18	Page No:	
	Sketch No:		Revision:	

ethod 2 is deemed critical vel M* - EQS philMn Linear comparison Midheight M* Equation CD-7 Mn calculated kNm kNm kNm kNm kNm kNm 4 706 2520 3505 3 22381 5040 3940 5277 7010 2 4798 7560 11351 1 7733 1331 13331 ble 5 - Comparison of scaling methods Kn Kn Kn Kn Kn Kn Kn Kn Kn Kn	mpare Linear Calcula	e two methods method ated method	to NZS3101:20	006 - CD4.2			[Governing cas
vel M* - EQS phiMn Linear comparison Midheight M* Equation CD-7 Mm calculated 0<	ethod 2	2 is deemed cr	itical					
Nm KNm KNm <th>vel</th> <th>M* - EQS</th> <th>phiMn</th> <th>Linear comparison</th> <th>Midheight M*</th> <th>Equation CD-7</th> <th>Mn calculated</th> <th></th>	vel	M* - EQS	phiMn	Linear comparison	Midheight M*	Equation CD-7	Mn calculated	
A 706 2520 3505 3 2381 5040 3940 9271 7010 2 4798 7560 1331 1 1999 13331 13331 13331 tble 5 - Comparison of scaling methods Rf 10 10 10 10 10 10 10 10 10 10		kNm C	kNm	kNm	kNm	kNm	kNm 0	
3 2381 5040 3940 9271 7010 2 4798 7560 9816 1 7733 10080 11351 d 11999 13331 13331 13331 ble 5 - Comparison of scaling methods Nf d 12 0 range line governs. Adopt these values for upper floor reinforcing checks	4	706	5	2520)		3505	
2 4798 7560 9816 1 7733 10080 11351 d 11999 13331 1331 13331 13331 13331 13331 13331 13331 13331 13331 13331 13331 13331 131 131	3	2381	L	5040	3940	9271	7010	
1 7733 10080 11351 d 11999 13331 13331 13331 13331 the 5 - Comparison of scaling methods R I 0 1 I 0 1	2	4798	3	7560)		9816	
a 1999 13331 13311 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 13111 1311 131111	1	7733	}	10080)		11351	
hie 5 - Comparison of scaling methods	a	11995	9 1333.	1333.	L		13331	
	L04 L03 L02 L01	14 12 8 6 2			-	Orange line Adopt these upper floor checks	governs. e values for reinforcing EQS ar comparison calculated	

	Project Name:	AFS Worked		
Holmos	Project No:			
noimes	Calcs By:	wlw		CALCS/ SKETCHES
	Date:	May 18	Page No:	
	Sketch No:		Revision:	
Check ductility capac Confirm ductility of NZS3101:2006. - Confirm assumed du - Confirm Limited Du	city demand on the v uctility, μ = 2.0 is ctile detailing req	wall and the app OK uired	ropriate level of detailing in a	accordance with
Assume elastic disp Scale elastic actions	lacement equival s by φMn / M*(m	ent to displaceme =1.0) = 14107 kNm	nt at M* = φMn n / 27235 kNm = 0.518	0.026.0.000
Therefore, elastic d	isplacement = 13	mm * 0.518 = 7mr	n Critica	l height
Inelastic displacem	ent = 13-7 = 6mm			0.019 0.000
Calculate plastic hir	nge length			
$\ell_{\rm p} = 0.15 \frac{M_{\rm e}}{V_{\rm e}} \le 0.5 L_{\rm w}$			(Eq. 2–9(c))	0.013 0.000
lp = 0.15 * 11999	/ 1067 = 1.55 m			
				μ.007 0.000
Therefore, Өр = 0.006 / 10.9m	= 0.00055			
фр = 0.00055 / 155	0mm = 0.000000)36		b.002 0.000
Calculate elastic cu	rvature			
$\phi_y = \frac{2f_y}{E_s h} \dots$			(Eq.2–9(d))	0.000 0.000
φy = 2 * 425 / (200	000*6000) = 0.00	0000071		Building Deflection Profile
Therefore <i>,</i> Kd = (7.1e-7+3.6e-7	7)/(7.1e-7) = 1.5			

Table 2.4 – K_d factor for limiting curvatures in flexural plastic regions in beams, columns and to walls where $h_w/L_w \ge 1.0$

	K _d for detailing type						
Classification of plastic region	Nominally ductile	Limited ductile	Ductile				
Beams and columns ⁽¹⁾	Group (i) 3 Group (ii), see 2.6.1.3.4 (c)(ii) n/a	11	19				
Walls, doubly reinforced with confined boundary elements	n/a	9	16				
Walls, doubly reinforced	4	6	14				
Walls, singly reinforced	0.8	n/a	n/a				
 NOTES - (1) See 2.6.1.3.4 (c) (i) and (ii). (2) A wall may be assumed to have confined boundary elements where the dimensional requirements of 11.4.3 and 11.4.5 and 10.4.7.5.1 for the compression force acting on the each boundary element. (3) Group (i) and (ii) are described in C2.6.1.3.4 							

Kd_actual = 1.5 < Kd_limited_ductile = 9

Therefore M=2 and limited ductile detailing is appropriate for this wall.

Project Name: AFS Worked Example Project No: **Holmes** Calcs By: W/W CALCS/ SKETCHES Date: May 18 Page No: --Sketch No: Revision: --**Calculate Design Shear Force Envelope** where ω_v is the dynamic shear magnification factor, which is given by: $\omega_v = 0.9 + \frac{n_t}{10}$(Eq. CD-9) NB: For buildings above 6 storeys, ωv is calculated differently (refer NZS3101:2006). φ_{\circ} = flexural overstrength at plastic hinge / bending moment at plastic hinge φo = 20,414 kNm / 14,107 kNm = 1.45 $\omega v = 0.9 + 5/10 = 1.4$ Therefore, factor V_{E}^{*} by 1.45 * 1.4 = 2.03 NB: NZS3101 only requires that shear excedd nominally ductile actions, μ = 1.25, Sp = 0.925 (1.57 / 0.7) / (1.14 / 0.925) = 1.81 Therefore, walls need not be factored by more than 1.81 **Design Wall Shear Reinforcing - Typical** Design shear reinforcing in accordance with NZS3101:2006 11.3.11 Calculate concrete shear contribution: $V_c = 0.17 \sqrt{f_c} A_{cv}$ (Eq. 11–12) (NB: Assumes wall concrete in net compression) fc' = 30 MPa Vc 819 kN Calculate required steel shear contribution: $V_{\rm g} = \frac{V^*}{\phi} - V_{\rm g}$(Eq. 11–16) $V_{\rm g} = A_{\rm v} f_{\rm yt} \frac{d}{s_{\rm p}}$(Eq. 11–18) Therefore, $A_s = (V^*/\phi - Vc) * s_2 / (d x f_{vt})$ Noting that As_min = $A_{\rm v} = \frac{0.7 \, t_{\rm w} s_2}{f_{\rm v}} \qquad ({\rm Eq. \ 11-19})$ Assuming horizontal bars e.f. at 200 crs $As_min = 56 mm2$

1		
Project No:		
Calcs By: <i>WIW</i>		CALCS/ SKETCHES
Date: May 18	Page No:	
Sketch No:	Revision:	

Wall shear scaling checks

φο * ων φm=1.25	2	2.058 1.81		/	Governs
VE		V*0		V*m=1.25, Sp=0.9	
(kN)		kN		kN	
228	kN	469	kN	412 kN	
540	kN	1112	kN	978 kN	
780	kN	1605	kN	1412 kN	
947	kN	1948	kN	1714 kN	
1067	kN	2195	kN	1931 kN	

Table 6 - Shear scaling per floor

Check reinforcing requirements

Name:	AFS						
Job no:	XX						
Length Wa	all	6000 n	nm			As_min	56 mm2
Thickness		200 n	nm				
TABLE: Pie	er Forces						
Story	Р	V2	Vc	Vs req	As-req	Required bars ar	ea (assumes 1 bar each face)
	kN	kN	kN	kN	mm2		
L04	241	412	894	0	0	0 mm2	XD12 e.f. OK
L03	754	978	894	410	1025	17 mm2	XD12 e.f. OK
L02	1266	1412	894	988	2470	41 mm2	XD12 e.f. OK
L01	1778	1714	894	1391	3477	58 mm2	XD12 e.f. OK
0.1							

Adopt XD12 at 200 crs OK

Table 7 - Shear reinforcing per floor

	Project Name	, AFS	Worked E	Example			
Holmos	Project No:						
noimes	Calcs By:	wlw				(CALCS/ SKETCHES
	Date:	May	18		Page No:		
	Sketch No:				Revision:		
Design Wall Shear F	Reinforcing - Pla	stic Hinge		NZS310	1:2006 - 11.4.6		
Calculate level of s	shear reinforcir	ig required	l in the pla	stic hinge z	rone		
Calculate concrete s	hear strength			-	11.4.6.1		
$V_{\rm c} = \left(0.27\lambda\sqrt{f_{\rm c}} + \frac{N}{4}\right)$	$\left(\frac{I^*}{A_g}\right) t_w d \ge 0.0 \dots$					(Eq. 11–2	8)
λ = 0.5 for limite	ed ductile plas	tic region:	s defined	by Table 2	2.4		
Vc =	0.27 * 0.5 * s	qrt(30) + 24	41kN/(4*20	00*6000) * 2	200 * 6000 =		
	0.74 MPa * 0	501 * 200 *	* 6000		=	449 kN	
Story P kN	V2 kN	Vc kN	Vs req kN	As-req mm2	Required bars are	a (assumes 1 bar	each face)
Grd 24	41 1931	449	2126	5314	89 mm2	XD12 e.f. OK	
Adopt XD12 at 200	crs in PHZ - OK						
Check maximum sh	ear force						
$\frac{V^*}{\phi} \le \left(\frac{\phi_{ow}}{\alpha_q} + 0.15\right)$	$\int \overline{f_c'} A_{cv} \leq v_{\max}$	А _{сv}				(Eq. 11–2	29)
Max shear for	e in accorda	nce with	11.4.6.3				
V*/φ	<=	Max	design s	hear			
2575 kN	<=		3330 kN	I			

Project Name: AFS Worked Example Project No: Holmes Calcs By: WW CALCS/ SKETCHES Date: May 18 Page No: --Sketch No: Revision: --Additional Detailing Requirements for Members Designed for Ductility: NZS3101:2006 - 11.4.2 Determine Ductile Detailing Length NZS3101:2006 - 11.4.2 The ductile detailing length measured from the critical section for in-plane actions shall be taken as the larger of: (a) $\frac{0.25M_e}{V_e} \le 2L_w$; or (b) 1.5 L_w. where $\frac{M_{e}}{V_{c}}$ at the critical section is the moment to shear force ratio for seismic actions found from an 0.25 * Me/Ve = 2.8 Therefore, adopt 1.5 Lw = 9 m Check dimensional limitations NZS3101:2006 - 11.4.2 $t_m = \frac{\alpha_r k_m \beta (A_r + 2) L_w}{1700 \sqrt{\xi}}$ (Eq. 11–20) tm = 130mm tw = 200mm - OK NZS3101:2006 - 11.4.4.2 Check dimensional limitations $\rho e_{min} = sqrt(30)/(2*500) = 0.55\%$ OK pe actual = = 0.70% Transverse Reinforcing For vertical reinforcing quantities less than 1%, no additional confinement steel is required when using AFS200D logicwall system. The formwork system provides sufficient confinement THEREFORE, ADOPT AFS200D, XD16 AT 392 CRS E.F VERTICAL XD12 AT 200 CRS E.F. HORIZ. Note that laps are to be detailed as non-contact laps in accordance with NZS3101:2006 using the equation: $L_{\rm ds} \geq L_{\rm d} + 1.5 s_{\rm L}$ Where S_L = stud spacing = 146mm. eg L_{ds} = (0.5 * 500 * 16)/sqrt(30MPa) + 1.5 * 146 mm = 950 mm