NTA Product Testing

Australian Wool Testing Authority Ltd - trading as AWTA Product Testing A.B.N. 43 006 014 106

1st Floor, 191 Racecourse Road, Flemington, Victoria 3031 P.O. Box 240, North Melbourne, Victoria 3051 Phone (03) 9371 2400 Fax (03) 9371 2499

TEST REPORT

CLIENT : CSR LTD RESEARCH AND DEV

TRINTI 3 39 DELHI ROAD

NORTH RYDE NSW 2113

TEST NUMBER 7-596289-CN

ISSUE DATE PRINT DATE : 06/03/2014 : 06/03/2014

SAMPLE DESCRIPTION Clients Ref: "AFS Rediwall Canadian"

Plastic surface set on concrete
Nominal Composition: AFS Rediwall Canadian PVC on
32MPa concrete Nominal mass: 73.5kg/m2
Mass of specimen: 0.72kg (0.04kg PVC, 0.68kg concrete)
Producer: Nuform Canada
End use: Permanent formwork used in basements and

internal walls in residential apartments

AS/NZS 3837:1998

Method of Test for Heat and Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter

Results: -

	Specimen							
Program Host Poloces	1_	2	3	Mean				
Average Heat Release Rate	30.0	37.3	36.6	34.6	kW/m2			
Average Specific extinction area (according to Specifica	184.9 tion C1.10	199.4 of the	164.0 Building Code	182.8 of Australi	m2/kg a)			

CONTINUED NEXT PAGE 205900E

© Australian Wool Testing Authority Ltd Copyright - All Rights Reserved

This Laboratory is accredited by the National Association of Testing Authorities, Australia, for:
-Chemical Testing of Textiles & Related Products : Accreditation No. 983
-Mechanical Testing of Textiles & Related Products : Accreditation No. 985
-Heat & Temperature Measurement : Accreditation No. 1356

This document is issued in accordance with NATA's accreditation requirements. Samples, and their identifying descriptions have been provided by the client unless otherwise stated. AWTA Ltd makes no warranty, implied or otherwise, as to the source of the tested samples. The above test results relate only to the sample or samples tested. This document shall not be reproduced except in full and shall be rendered void if ammended or altered. This document, the names AWTA Product Testing and AWTA Ltd may be used in advertising providing the content and format of the advertisement have been approved in advance by the Managing Director of AWTA Ltd. Machin

APPROVED SIGNATORY

MANAGING DIRECTOR

AWTA PRODUCT TESTING

Australian Wool Testing Authority Ltd - trading as AWTA Product Testing
A.B.N. 43 006 014 106

1st Floor, 191 Racecourse Road, Flemington, Victoria 3031 P.O. Box 240, North Melbourne, Victoria 3051 Phone (03) 9371 2400 Fax (03) 9371 2499

TEST REPORT

CLIENT : CSR LTD RESEARCH AND DEV

TRINTI 3 39 DELHI ROAD NORTH RYDE NSW 2113 TEST NUMBER ISSUE DATE

g/m2.s

7-596289-CN

PRINT DATE

: 06/03/2014 : 06/03/2014

· 使用的 · 使用	於逐步被巴巴斯德軍	化多种吸入密度		· 是一下 · 表 · 表 · 表 · · · · · · · · · · · · ·			
Test orientation: Ho	rizontal						
Specimen							
	1	2	3	Mean	10000000000000000000000000000000000000		
Irradiance	50	50	50	50	kW/m2		
Exhaust flow rate	24	24	24	24	1/s		
Time to sustained flami	COMMENT OF THE PROPERTY OF THE	45	51	49	S		
Test duration	339	404	426	390	S		
rest duracton		101		350			
Heat release rate curve	on the 9	attached	sheets which	form part	of this		
report	与支票的发生	产品的 医全管性		演型的下去更多			
Peak heat release	4 4 4 4 4 4		· 医性性病 经有价值 4		人名英贝特里克		
after ignition	46.3	55.2	49.5	50.4	kW/m2		
Average heat at 60s	41.9	44.3	42.7	43.0	kW/m2		
Release rate at 180s	40.3	46.9	45.6	44.3	kW/m2		
After ignition at 300s	30.2	40.3	40.6	37.0	kW/m2		
Total heat released	8.6	13.9	14.5	12.3	MJ/m2		
Average effective heat					110 / 1112		
of combustion	6.5	7.4	7.5	7.2	MJ/kq		
OI COMBUBCION					110/119		
Initial thickness	38.0	38.0	38.0	38.0	mm		
Initial mass	743.3	769.5	768.6	760.5	q		
Mass remaining	731.6	754.3	752.5	746.1	q		
Mass percentage				and the first of			
pyrolysed	1.6	2.0	2.1	1.9	승		
Mass loss	11.7	15.2	16.1	14.3	q		

The formulae given in the Building Code of Austalia have been shown to give inaccuracies in determination of Group Number for certain materials. Due to this AWTA Product Testing no longer reports Group Numbers. The formulae for calculation of Group Number is available from the website of the Australian Building Codes Board. Group Number calculation based on the results described in this report can be undertaken at the clients discretion

5.0

Tests were conducted with a wire grid placed over the sample during testing This was done to contain intumescing sample within the sample holder

These test results relate only to the behaviour of the product under the conditions of the test, they are not intended to be the sole criterion for the assessment of performance under real fire conditions

205900E

1

Average rate of mass

loss

END OF REPORT

PAGE 2

© Australian Wool Testing Authority Ltd Copyright - All Rights Reserved

This Laboratory is accredited by the National Association of Testing Authorities, Australia, for:
-Chemical Testing of Textiles & Related Products : Accreditation No. 985
-Mechanical Testing of Textiles & Related Products : Accreditation No. 985
-Heat & Temperature Measurement : Accreditation No. 1356

This document is issued in accordance with NATA's accreditation requirements. Samples, and their identifying descriptions have been provided by the client unless otherwise stated. AWTA Ltd makes no warranty, implied or otherwise, as to the source of the tested samples. The above test results relate only to the sample or samples tested. This document shall not be reproduced except in full and shall be rendered void if ammended or altered. This document, the names AWTA Product Testing and AWTA Ltd may be used in advertising providing the content and format of the advertisement have been approved in advance by the Managing Director of AWTA Ltd.

APPROVED SIGNATORY

)

MICHAEL A. JACKSON B.Sc.(Hons)